RD Sharma Solutions for Class 10 Maths Chapter 6 Trigonometric Identities
The branch of mathematics which deals with the measurement of the sides and the angles of a triangle is trigonometry. We know that by now this topic would already seem difficult and complicated as its completely new to you. So, in order to make your learning process smooth and hassle-free the RD Sharma Solutions prepared by Goyanka Maths Study will help students get the correct understanding of various chapters in the book.
Trigonometric Identities is the 6th chapter of RD Sharma Class 10 which has two exercises and its solved answers with detailed explanations are given here RD Sharma Solutions for Class 10. The previous chapter was about trigonometric ratios and relations between them. But this chapter will be about proving some trigonometric identities and use them to prove other useful trigonometric identities.
Access the RD Sharma Solutions For Class 10 Maths Chapter 6 – Trigonometric Identities
RD Sharma Solutions for Class 10 Maths Chapter 6 Exercise 6.1 Page No: 6.43
Prove the following trigonometric identities:
1. (1 – cos2 A) cosec2 A = 1
Solution:
Taking the L.H.S,
(1 – cos2 A) cosec2 A
= (sin2 A) cosec2 A [∵ sin2 A + cos2 A = 1 ⇒1 – sin2 A = cos2 A]
= 12
= 1 = R.H.S
– Hence Proved
2. (1 + cot2 A) sin2 A = 1
Solution:
By using the identity,
cosec2 A – cot2 A = 1 ⇒ cosec2 A = cot2 A + 1
Taking,
L.H.S = (1 + cot2 A) sin2 A
= cosec2 A sin2 A
= (cosec A sin A)2
= ((1/sin A) × sin A)2
= (1)2
= 1
= R.H.S
– Hence Proved
3. tan2 θ cos2 θ = 1 − cos2 θ
Solution:
We know that,
sin2 θ + cos2 θ = 1
Taking,
L.H.S = tan2 θ cos2 θ
= (tan θ × cos θ)2
= (sin θ)2
= sin2 θ
= 1 – cos2 θ
= R.H.S
– Hence Proved
4. cosec θ √(1 – cos2 θ) = 1
Solution:
Using identity,
sin2 θ + cos2 θ = 1 ⇒ sin2 θ = 1 – cos2 θ
Taking L.H.S,
L.H.S = cosec θ √(1 – cos2 θ)
= cosec θ √( sin2 θ)
= cosec θ x sin θ
= 1
= R.H.S
– Hence Proved
5. (sec2 θ − 1)(cosec2 θ − 1) = 1
Solution:
Using identities,
(sec2 θ − tan2 θ) = 1 and (cosec2 θ − cot2 θ) = 1
We have,
L.H.S = (sec2 θ – 1)(cosec2θ – 1)
= tan2θ × cot2θ
= (tan θ × cot θ)2
= (tan θ × 1/tan θ)2
= 12
= 1
= R.H.S
– Hence Proved
6. tan θ + 1/ tan θ = sec θ cosec θ
Solution:
We have,
L.H.S = tan θ + 1/ tan θ
= (tan2 θ + 1)/ tan θ
= sec2 θ / tan θ [∵ sec2 θ − tan2 θ = 1]
= (1/cos2 θ) x 1/ (sin θ/cos θ) [∵ tan θ = sin θ / cos θ]
= cos θ/ (sin θ x cos2 θ)
= 1/ cos θ x 1/ sin θ
= sec θ x cosec θ
= sec θ cosec θ
= R.H.S
– Hence Proved
7. cos θ/ (1 – sin θ) = (1 + sin θ)/ cos θ
Solution:
We know that,
sin2 θ + cos2 θ = 1
So, by multiplying both the numerator and the denominator by (1+ sin θ), we get
L.H.S =
= R.H.S
– Hence Proved
8. cos θ/ (1 + sin θ) = (1 – sin θ)/ cos θ
Solution:
We know that,
sin2 θ + cos2 θ = 1
So, by multiplying both the numerator and the denominator by (1- sin θ), we get
L.H.S =
= R.H.S
– Hence Proved
9. cos2 θ + 1/(1 + cot2 θ) = 1
Solution:
We already know that,
cosec2 θ − cot2 θ = 1 and sin2 θ + cos2 θ = 1
Taking L.H.S,
= cos2 A + sin2 A
= 1
= R.H.S
– Hence Proved
10. sin2 A + 1/(1 + tan 2 A) = 1
Solution:
We already know that,
sec2 θ − tan2 θ = 1 and sin2 θ + cos2 θ = 1
Taking L.H.S,
= sin2 A + cos2 A
= 1
= R.H.S
– Hence Proved
11.
Solution:
We know that, sin2 θ + cos2 θ = 1
Taking the L.H.S,
= cosec θ – cot θ
= R.H.S
– Hence Proved
12. 1 – cos θ/ sin θ = sin θ/ 1 + cos θ
Solution:
We know that,
sin2 θ + cos2 θ = 1
So, by multiplying both the numerator and the denominator by (1+ cos θ), we get
= R.H.S
– Hence Proved
13. sin θ/ (1 – cos θ) = cosec θ + cot θ
Solution:
Taking L.H.S,
= cosec θ + cot θ
= R.H.S
– Hence Proved
14. (1 – sin θ) / (1 + sin θ) = (sec θ – tan θ)2
Solution:
Taking the L.H.S,
= (sec θ – tan θ)2
= R.H.S
– Hence Proved
15.
Solution:
Taking L.H.S,
= cot θ
= R.H.S
– Hence Proved
16. tan2 θ − sin2 θ = tan2 θ sin2 θ
Solution:
Taking L.H.S,
L.H.S = tan2 θ − sin2 θ
= tan2 θ sin2 θ
= R.H.S
– Hence Proved
17. (cosec θ + sin θ)(cosec θ – sin θ) = cot2θ + cos2θ
Solution:
Taking L.H.S = (cosec θ + sin θ)(cosec θ – sin θ)
On multiplying we get,
= cosec2 θ – sin2 θ
= (1 + cot2 θ) – (1 – cos2 θ) [Using cosec2 θ − cot2 θ = 1 and sin2 θ + cos2 θ = 1]
= 1 + cot2 θ – 1 + cos2 θ
= cot2 θ + cos2 θ
= R.H.S
– Hence Proved
18. (sec θ + cos θ) (sec θ – cos θ) = tan2 θ + sin2 θ
Solution:
Taking L.H.S = (sec θ + cos θ)(sec θ – cos θ)
On multiplying we get,
= sec2 θ – sin2 θ
= (1 + tan2 θ) – (1 – sin2 θ) [Using sec2 θ − tan2 θ = 1 and sin2 θ + cos2 θ = 1]
= 1 + tan2 θ – 1 + sin2 θ
= tan 2 θ + sin 2 θ
= R.H.S
– Hence Proved
19. sec A(1- sin A) (sec A + tan A) = 1
Solution:
Taking L.H.S = sec A(1 – sin A)(sec A + tan A)
Substituting sec A = 1/cos A and tan A =sin A/cos A in the above we have,
L.H.S = 1/cos A (1 – sin A)(1/cos A + sin A/cos A)
= 1 – sin2 A / cos2 A [After taking L.C.M]
= cos2 A / cos2 A [∵ 1 – sin2 A = cos2 A]
= 1
= R.H.S
– Hence Proved
20. (cosec A – sin A)(sec A – cos A)(tan A + cot A) = 1
Solution:
Taking L.H.S = (cosec A – sin A)(sec A – cos A)(tan A + cot A)
= (cos2 A/ sin A) (sin2 A/ cos A) (1/ sin A cos A) [∵ sin2 θ + cos2 θ = 1]
= (sin A cos A) (1/ cos A sin A)
= 1
= R.H.S
– Hence Proved
21. (1 + tan2 θ)(1 – sin θ)(1 + sin θ) = 1
Solution:
Taking L.H.S = (1 + tan2θ)(1 – sin θ)(1 + sin θ)
And, we know sin2 θ + cos2 θ = 1 and sec2 θ – tan2 θ = 1
So,
L.H.S = (1 + tan2 θ)(1 – sin θ)(1 + sin θ)
= (1 + tan2 θ){(1 – sin θ)(1 + sin θ)}
= (1 + tan2 θ)(1 – sin2 θ)
= sec2 θ (cos2 θ)
= (1/ cos2 θ) x cos2 θ
= 1
= R.H.S
– Hence Proved
22. sin2 A cot2 A + cos2 A tan2 A = 1
Solution:
We know that,
cot2 A = cos2 A/ sin2 A and tan2 A = sin2 A/cos2 A
Substituting the above in L.H.S, we get
L.H.S = sin2 A cot2 A + cos2 A tan2 A
= {sin2 A (cos2 A/ sin2 A)} + {cos2 A (sin2 A/cos2 A)}
= cos2 A + sin2 A
= 1 [∵ sin2 θ + cos2 θ = 1]
= R.H.S
– Hence Proved
23.
Solution:
(i) Taking the L.H.S and using sin2 θ + cos2 θ = 1, we have
L.H.S = cot θ – tan θ
= R.H.S
– Hence Proved
(ii) Taking the L.H.S and using sin2 θ + cos2 θ = 1, we have
L.H.S = tan θ – cot θ
= R.H.S
– Hence Proved
24. (cos2 θ/ sin θ) – cosec θ + sin θ = 0
Solution:
Taking L.H.S and using sin2 θ + cos2 θ = 1, we have
= – sin θ + sin θ
= 0
= R.H.S
- Hence proved
25.
Solution:
Taking L.H.S,
= 2 sec2 A
= R.H.S
- Hence proved
26.
Solution:
Taking the LHS and using sin2 θ + cos2 θ = 1, we have
= 2/ cos θ
= 2 sec θ
= R.H.S
- Hence proved
27.
Solution:
Taking the LHS and using sin2 θ + cos2 θ = 1, we have
= R.H.S
- Hence proved
28.
Solution:
Taking L.H.S,
Using sec2 θ − tan2 θ = 1 and cosec2 θ − cot2 θ = 1
= R.H.S
- Hence proved
29.
Solution:
Taking L.H.S and using sin2 θ + cos2 θ = 1, we have
= R.H.S
- Hence proved
30.
Solution:
Taking LHS, we have
= 1 + tan θ + cot θ
= R.H.S
- Hence proved
31. sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1
Solution:
From trig. Identities we have,
sec2 θ − tan2 θ = 1
On cubing both sides,
(sec2θ − tan2θ)3 = 1
sec6 θ − tan6 θ − 3sec2 θ tan2 θ(sec2 θ − tan2 θ) = 1
[Since, (a – b)3 = a3 – b3 – 3ab(a – b)]
sec6 θ − tan6 θ − 3sec2 θ tan2 θ = 1
⇒ sec6 θ = tan6 θ + 3sec2 θ tan2 θ + 1
Hence, L.H.S = R.H.S
- Hence proved
32. cosec6 θ = cot6 θ + 3cot2 θ cosec2 θ + 1
Solution:
From trig. Identities we have,
cosec2 θ − cot2 θ = 1
On cubing both sides,
(cosec2 θ − cot2 θ)3 = 1
cosec6 θ − cot6 θ − 3cosec2 θ cot2 θ (cosec2 θ − cot2 θ) = 1
[Since, (a – b)3 = a3 – b3 – 3ab(a – b)]
cosec6 θ − cot6 θ − 3cosec2 θ cot2 θ = 1
⇒ cosec6 θ = cot6 θ + 3 cosec2 θ cot2 θ + 1
Hence, L.H.S = R.H.S
- Hence proved
33.
Solution:
Taking L.H.S and using sec2 θ − tan2 θ = 1 ⇒ 1 + tan2 θ = sec2 θ
= R.H.S
- Hence proved
34.
Solution:
Taking L.H.S and using the identity sin2A + cos2A = 1, we get
sin2A = 1 − cos2A
⇒ sin2A = (1 – cos A)(1 + cos A)
- Hence proved
35.
Solution:
We have,
Rationalizing the denominator and numerator with (sec A + tan A) and using sec2 θ − tan2 θ = 1 we get,
= R.H.S
- Hence proved
36.
Solution:
We have,
On multiplying numerator and denominator by (1 – cos A), we get
= R.H.S
- Hence proved
37. (i)
Solution:
Taking L.H.S and rationalizing the numerator and denominator with √(1 + sin A), we get
= R.H.S
- Hence proved
(ii)
Solution:
Taking L.H.S and rationalizing the numerator and denominator with its respective conjugates, we get
= 2 cosec A
= R.H.S
- Hence proved
38. Prove that:
(i)
Solution:
Taking L.H.S and rationalizing the numerator and denominator with its respective conjugates, we get
= 2 cosec θ
= R.H.S
- Hence proved
(ii)
Solution:
Taking L.H.S and rationalizing the numerator and denominator with its respective conjugates, we get
= R.H.S
- Hence proved
(iii)
Solution:
Taking L.H.S and rationalizing the numerator and denominator with its respective conjugates, we get
= 2 cosec θ
= R.H.S
- Hence proved
(iv)
Solution:
Taking L.H.S, we have
= R.H.S
- Hence proved
39.
Solution:
Taking LHS = (sec A – tan A)2 , we have
= R.H.S
- Hence proved
40.
Solution:
Taking L.H.S and rationalizing the numerator and denominator with (1 – cos A), we get
= (cosec A – cot A)2
= (cot A – cosec A)2
= R.H.S
- Hence proved
41.
Solution:
Considering L.H.S and taking L.C.M and on simplifying we have,
= 2 cosec A cot A = RHS
- Hence proved
42.
Solution:
Taking LHS, we have
= cos A + sin A
= RHS
- Hence proved
43.
Solution:
Considering L.H.S and taking L.C.M and on simplifying we have,
= 2 sec2 A
= RHS
- Hence proved
RD Sharma Solutions for Class 10 Maths Chapter 6 Exercise 6.2 Page No: 6.54
1. If cos θ = 4/5, find all other trigonometric ratios of angle θ.
Solution:
We have,
cos θ = 4/5
And we know that,
sin θ = √(1 – cos2 θ)
⇒ sin θ = √(1 – (4/5)2)
= √(1 – (16/25))
= √[(25 – 16)/25]
= √(9/25)
= 3/5
∴ sin θ = 3/5
Since, cosec θ = 1/ sin θ
= 1/ (3/5)
⇒ cosec θ = 5/3
And, sec θ = 1/ cos θ
= 1/ (4/5)
⇒ cosec θ = 5/4
Now,
tan θ = sin θ/ cos θ
= (3/5)/ (4/5)
⇒ tan θ = 3/4
And, cot θ = 1/ tan θ
= 1/ (3/4)
⇒ cot θ = 4/3
2. If sin θ = 1/√2, find all other trigonometric ratios of angle θ.
Solution:
We have,
sin θ = 1/√2
And we know that,
cos θ = √(1 – sin2 θ)
⇒ cos θ = √(1 – (1/√2)2)
= √(1 – (1/2))
= √[(2 – 1)/2]
= √(1/2)
= 1/√2
∴ cos θ = 1/√2
Since, cosec θ = 1/ sin θ
= 1/ (1/√2)
⇒ cosec θ = √2
And, sec θ = 1/ cos θ
= 1/ (1/√2)
⇒ sec θ = √2
Now,
tan θ = sin θ/ cos θ
= (1/√2)/ (1/√2)
⇒ tan θ = 1
And, cot θ = 1/ tan θ
= 1/ (1)
⇒ cot θ = 1
3.
Solution:
Given,
tan θ = 1/√2
By using sec2 θ − tan2 θ = 1,
4.
Solution:
Given,
tan θ = 3/4
By using sec2 θ − tan2 θ = 1,
sec θ = 5/4
Since, sec θ = 1/ cos θ
⇒ cos θ = 1/ sec θ
= 1/ (5/4)
= 4/5
So,
5.
Solution:
Given, tan θ = 12/5
Since, cot θ = 1/ tan θ = 1/ (12/5) = 5/12
Now, by using cosec2 θ − cot2 θ = 1
cosec θ = √(1 + cot2 θ)
= √(1 + (5/12)2 )
= √(1 + 25/144)
= √(169/ 25)
⇒ cosec θ = 13/5
Now, we know that
sin θ = 1/ cosec θ
= 1/ (13/5)
⇒ sin θ = 5/13
Putting value of sin θ in the expression we have,
= 25/ 1
= 25
6.
Solution:
Given,
cot θ = 1/√3
Using cosec2 θ − cot2 θ = 1, we can find cosec θ
cosec θ = √(1 + cot2 θ)
= √(1 + (1/√3)2)
= √(1 + (1/3)) = √((3 + 1)/3)
= √(4/3)
⇒ cosec θ = 2/√3
So, sin θ = 1/ cosec θ = 1/ (2/√3)
⇒ sin θ = √3/2
And, we know that
cos θ = √(1 – sin2 θ)
= √(1 – (√3/2)2)
= √(1 – (3/4))
= √((4 – 3)/4)
= √(1/4)
⇒ cos θ = 1/2
Now, using cos θ and sin θ in the expression, we have
= 3/5
7.
Solution:
Given,
cosec A = √2
Using cosec2 A − cot2 A = 1, we find cot A
= 4/2
= 2