RD Sharma Solutions for Class 9 Maths Chapter 5 Factorization of Algebraic Expressions
RD Sharma Class 9 Solutions for the Chapter 5 Factorization of Algebraic Expressions are given here in detail. This study material includes five exercises and all the questions are solved by GMS. RD Sharma Class 9 Solutions Maths helps to build the basics and in-depth understanding of the fundamental Maths concepts. In this chapter, students will learn about factorisation and how to simplify an algebraic expression using the factorisation method. The process of factorization can be defined as the disintegration of a term into smaller factors. Whereas, the algebraic expressions are built up of variables, integer constants, and basic arithmetic operations of algebra.
Access Answers to Maths RD Sharma Solutions for Class 9 Chapter 5 Factorization of Algebraic Expressions
Exercise 5.1 Page No: 5.9
Question 1: Factorize x3 + x – 3x2 – 3
Solution:
x3 + x – 3x2 – 3
Here x is common factor in x3 + x and – 3 is common factor in – 3x2 – 3
x3 – 3x2 + x – 3
x2 (x – 3) + 1(x – 3)
Taking ( x – 3) common
(x – 3) (x2 + 1)
Therefore x3 + x – 3x2 – 3 = (x – 3) (x2 + 1)
Question 2: Factorize a(a + b)3 – 3a2b(a + b)
Solution:
a(a + b)3 – 3a2b(a + b)
Taking (a + b) as common factor
= a(a + b) {(a + b)2 – 3ab}
= a(a + b) {a2 + b2 + 2ab – 3ab}
= a(a + b) (a2 + b2 – ab)
Question 3: Factorize x(x3 – y3) + 3xy(x – y)
Solution:
x(x3 – y3) + 3xy(x – y)
= x(x – y) (x2 + xy + y2) + 3xy(x – y)
Taking x(x – y) as a common factor
= x(x – y) (x2 + xy + y2 + 3y)
= x(x – y) (x2 + xy + y2 + 3y)
Question 4: Factorize a2x2 + (ax2 + 1)x + a
Solution:
a2x2 + (ax2 + 1)x + a
= a2x2 + a + (ax2 + 1)x
= a(ax2 + 1) + x(ax2 + 1)
= (ax2 + 1) (a + x)
Question 5: Factorize x2 + y – xy – x
Solution:
x2 + y – xy – x
= x2 – x – xy + y
= x(x- 1) – y(x – 1)
= (x – 1) (x – y)
Question 6: Factorize x3 – 2x2y + 3xy2 – 6y3
Solution:
x3 – 2x2y + 3xy2 – 6y3
= x2(x – 2y) + 3y2(x – 2y)
= (x – 2y) (x2 + 3y2)
Question 7: Factorize 6ab – b2 + 12ac – 2bc
Solution:
6ab – b2 + 12ac – 2bc
= 6ab + 12ac – b2 – 2bc
Taking 6a common from first two terms and –b from last two terms
= 6a(b + 2c) – b(b + 2c)
Taking (b + 2c) common factor
= (b + 2c) (6a – b)
Question 8: Factorize (x2 + 1/x2) – 4(x + 1/x) + 6
Solution:
(x2 + 1/x2) – 4(x + 1/x) + 6
= x2 + 1/x2 – 4x – 4/x + 4 + 2
= x2 + 1/x2 + 4 + 2 – 4/x – 4x
= (x2) + (1/x) 2 + ( -2 )2 + 2x(1/x) + 2(1/x)(-2) + 2(-2)x
As we know, x2 + y2 + z2 + 2xy + 2yz + 2zx = (x+y+z) 2
So, we can write;
= (x + 1/x + (-2 )) 2
or (x + 1/x – 2) 2
Therefore, x2 + 1/x2) – 4(x + 1/x) + 6 = (x + 1/x – 2) 2
Question 9: Factorize x(x – 2) (x – 4) + 4x – 8
Solution:
x(x – 2) (x – 4) + 4x – 8
= x(x – 2) (x – 4) + 4(x – 2)
= (x – 2) [x(x – 4) + 4]
= (x – 2) (x2 – 4x + 4)
= (x – 2) [x2 – 2 (x)(2) + (2) 2]
= (x – 2) (x – 2) 2
= (x – 2)3
Question 10: Factorize ( x + 2 ) ( x2 + 25 ) – 10x2 – 20x
Solution :
( x + 2) ( x2 + 25) – 10x ( x + 2 )
Take ( x + 2 ) as common factor;
= ( x + 2 )( x2 + 25 – 10x)
=( x + 2 ) ( x2 – 10x + 25)
Expanding the middle term of ( x2 – 10x + 25 )
=( x + 2 ) ( x2 – 5x – 5x + 25 )
=( x + 2 ){ x (x – 5 ) – 5 ( x – 5 )}
=( x + 2 )( x – 5 )( x – 5 )
=( x + 2 )( x – 5 )2
Therefore, ( x + 2) ( x2 + 25) – 10x ( x + 2 ) = ( x + 2 )( x – 5 )2
Question 11: Factorize 2a2 + 2√6 ab + 3b2
Solution:
2a2 + 2√6 ab + 3b2
Above expression can be written as ( √2a )2 + 2 × √2a × √3b + ( √3b)2
As we know, ( p + q ) 2 = p2 + q2 + 2pq
Here p = √2a and q = √3b
= (√2a + √3b )2
Therefore, 2a2 + 2√6 ab + 3b2 = (√2a + √3b )2
Question 12: Factorize (a – b + c)2 + (b – c + a) 2 + 2(a – b + c) (b – c + a)
Solution:
(a – b + c)2 + ( b – c + a) 2 + 2(a – b + c) (b – c + a)
{Because p2 + q2 + 2pq = (p + q) 2}
Here p = a – b + c and q = b – c + a
= [a – b + c + b- c + a]2
= (2a)2
= 4a2
Question 13: Factorize a2 + b2 + 2( ab+bc+ca )
Solution:
a2 + b2 + 2ab + 2bc + 2ca
As we know, p2 + q2 + 2pq = (p + q) 2
We get,
= ( a+b)2 + 2bc + 2ca
= ( a+b)2 + 2c( b + a )
Or ( a+b)2 + 2c( a + b )
Take ( a + b ) as common factor;
= ( a + b )( a + b + 2c )
Therefore, a2 + b2 + 2ab + 2bc + 2ca = ( a + b )( a + b + 2c )
Question 14: Factorize 4(x-y) 2 – 12(x – y)(x + y) + 9(x + y)2
Solution :
Consider ( x – y ) = p, ( x + y ) = q
= 4p2 – 12pq + 9q2
Expanding the middle term, -12 = -6 -6 also 4× 9=-6 × -6
= 4p2 – 6pq – 6pq + 9q2
=2p( 2p – 3q ) -3q( 2p – 3q )
= ( 2p – 3q ) ( 2p – 3q )
= ( 2p – 3q )2
Substituting back p = x – y and q = x + y;
= [2( x-y ) – 3( x+y)]2 = [ 2x – 2y – 3x – 3y ] 2
= (2x-3x-2y-3y ) 2
=[ -x – 5y] 2
=[( -1 )( x+5y )] 2
=( x+5y ) 2
Therefore, 4(x-y) 2 – 12(x – y)(x + y) + 9(x + y)2 = ( x+5y )2
Question 15: Factorize a2 – b2 + 2bc – c2
Solution :
a2 – b2 + 2bc – c2
As we know, ( a-b)2 = a2 + b2 – 2ab
= a2 – ( b – c) 2
Also we know, a2 – b2 = ( a+b)( a-b)
= ( a + b – c )( a – ( b – c ))
= ( a + b – c )( a – b + c )
Therefore, a2 – b2 + 2bc – c2 =( a + b – c )( a – b + c )
Question 16: Factorize a2 + 2ab + b2 – c2
Solution:
a2 + 2ab + b2 – c2
= (a2 + 2ab + b2) – c2
= (a + b)2 – (c) 2
We know, a2 – b2 = (a + b) (a – b)
= (a + b + c) (a + b – c)
Therefore a2 + 2ab + b2 – c2 = (a + b + c) (a + b – c)
Exercise 5.2 Page No: 5.13
Factorize each of the following expressions:
Question 1: p3 + 27
Solution:
p3 + 27
= p3 + 33
[using a3 + b3 = (a + b)(a2 –ab + b2)]
= (p + 3)(p² – 3p – 9)
Therefore, p3 + 27 = (p + 3)(p² – 3p – 9)
Question 2: y3 + 125
Solution:
y3 + 125
= y3 + 53
[using a3 + b3 = (a + b)(a2 –ab + b2)]
= (y+5)(y2 − 5y + 52)
= (y + 5)(y2 − 5y + 25)
Therefore, y3 + 125 = (y + 5)(y2 − 5y + 25)
Question 3: 1 – 27a3
Solution:
= (1)3 −(3a) 3
[using a3 – b3 = (a – b)(a2 + ab + b2)]
= (1− 3a)(12 + 1×3a + (3a) 2)
= (1−3a)(1 + 3a + 9a2)
Therefore, 1−27a3 = (1−3a)(1 + 3a+ 9a2)
Question 4: 8x3y3 + 27a3
Solution:
8x3y3 + 27a3
= (2xy) 3 + (3a) 3
[using a3 + b3 = (a + b)(a2 –ab + b2)]
= (2xy +3a)((2xy)2−2xy×3a+(3a) 2)
= (2xy+3a)(4x2y2 −6xya + 9a2)
Question 5: 64a3 − b3
Solution:
64a3 − b3
= (4a)3−b3
[using a3 – b3 = (a – b)(a2 + ab + b2)]
= (4a−b)((4a)2 + 4a×b + b2)
=(4a−b)(16a2 +4ab+b2)
Question 6: x3 / 216 – 8y3
Solution:
x3 / 216 – 8y3
Question 7: 10x4 y – 10xy4
Solution:
10x4 y – 10xy4
= 10xy(x3 − y3)
[using a3 – b3 = (a – b)(a2 + ab + b2)]
= 10xy (x−y)(x2 + xy + y2)
Therefore, 10x4 y – 10xy4 = 10xy (x−y)(x2 + xy + y2)
Question 8: 54x6 y + 2x3y4
Solution:
54x6 y + 2x3y4
= 2x3y(27x3 +y3)
= 2x3y((3x) 3 + y3)
[using a3 + b3 = (a + b)(a2 – ab + b2)]
= 2x3y {(3x+y) ((3x)2−3xy+y2)}
=2x3y(3x+y)(9x2 − 3xy + y2)
Question 9: 32a3 + 108b3
Solution:
32a3 + 108b3
= 4(8a3 + 27b3)
= 4((2a) 3+(3b) 3)
[using a3 + b3 = (a + b)(a2 – ab + b2)]
= 4[(2a+3b)((2a)2−2a×3b+(3b) 2)]
= 4(2a+3b)(4a2 − 6ab + 9b2)
Question 10: (a−2b)3 − 512b3
Solution:
(a−2b)3 − 512b3
= (a−2b)3 −(8b) 3
[using a3 – b3 = (a – b)(a2 + ab + b2)]
= (a −2b−8b) {(a−2b)2 + (a−2b)8b + (8b) 2}
=(a −10b)(a2 + 4b2 − 4ab + 8ab − 16b2 + 64b2)
=(a−10b)(a2 + 52b2 + 4ab)
Question 11: (a+b)3 − 8(a−b)3
Solution:
(a+b)3 − 8(a−b)3
= (a+b)3 − [2(a−b)]3
= (a+b)3 − [2a−2b] 3
[using p3 – q3 = (p – q)(p2 + pq + q2)]
Here p = a+b and q = 2a−2b
= (a+b−(2a−2b))((a+b)2+(a+b)(2a−2b)+(2a−2b) 2)
=(a+b−2a+2b)(a2+b2+2ab+(a+b)(2a−2b)+(2a−2b) 2)
=(a+b−2a+2b)(a2+b2+2ab+2a2−2ab+2ab−2b2+(2a−2b) 2)
=(3b−a)(3a2+2ab−b2+(2a−2b) 2)
=(3b−a)(3a2+2ab−b2+4a2+4b2−8ab)
=(3b−a)(3a2+4a2−b2+4b2−8ab+2ab)
=(3b−a)(7a2+3b2−6ab)
Question 12: (x+2)3 + (x−2) 3
Solution:
(x+2)3 + (x−2) 3
[using p3 + q3 = (p + q)(p2 – pq + q2)]
Here p = x + 2 and q = x – 2
= (x+2+x−2)((x+2)2−(x+2)(x−2)+(x−2) 2)
=2x(x2 +4x+4−(x+2)(x−2)+x2−4x+4)
[ Using : (a+b)(a−b) = a2−b2 ]
= 2x(2x2 + 8 − (x2 − 22))
= 2x(2x2 +8 − x2 + 4)
= 2x(x2 + 12)
Exercise 5.3 Page No: 5.17
Question 1: Factorize 64a3 + 125b3 + 240a2b + 300ab2
Solution:
64a3 + 125b3 + 240a2b + 300ab2
= (4a)3 + (5b) 3 + 3(4a)2(5b) + 3(4a)(5b)2 , which is similar to a3 + b3 + 3a2b + 3ab2
We know that, a3 + b3 + 3a2b + 3ab2 = (a+b)3]
= (4a+5b)3
Question 2: Factorize 125x3 – 27y3 – 225x2y + 135xy2
Solution:
125x3 – 27y3 – 225x2y + 135xy2
Above expression can be written as (5x)3−(3y) 3−3(5x)2(3y) + 3(5x)(3y)2
Using: a3 − b3 − 3a2b + 3ab2 = (a−b)3
= (5x − 3y)3
Question 3: Factorize 8/27 x3 + 1 + 4/3 x2 + 2x
Solution:
8/27 x3 + 1 + 4/3 x2 + 2x
Question 4: Factorize 8x3 + 27y3 + 36x2y + 54xy2
Solution:
8x3 + 27y3 + 36x2y + 54xy2
Above expression can be written as (2x)3 + (3y) 3 + 3×(2x)2×3y + 3×(2x)(3y)2
Which is similar to a³ + b³ + 3a²b + 3ab² = (a + b) ³]
Here a = 2x and b = 3y
= (2x+3y)3
Therefore, 8x3 + 27y3 + 36x2y + 54xy2 = (2x+3y)3
Question 5: Factorize a3 − 3a2b + 3ab2 − b3 + 8
Solution:
a3 − 3a2b + 3ab2 − b3 + 8
Using: a3 − b3 − 3a2b + 3ab2 = (a−b)3
= (a−b)3 + 23
Again , Using: a3 + b3 =(a + b)(a2 – ab + b2)]
=(a−b+2)((a−b)2−(a−b) × 2 + 22)
=(a−b+2)(a2+b2−2ab−2(a−b)+4)
=(a−b+2)(a2+b2−2ab−2a+2b+4)
a3 − 3a2b + 3ab2 − b3 + 8 =(a−b+2)(a2+b2−2ab−2a+2b+4)
Exercise 5.4 Page No: 5.22
Factorize each of the following expressions:
Question 1: a3 + 8b3 + 64c3 − 24abc
Solution:
a3 + 8b3 + 64c3 − 24abc
= (a)3 + (2b) 3 + (4c) 3− 3×a×2b×4c
[Using a3+b3+c3−3abc = (a+b+c)(a2+b2+c2−ab−bc−ca)]
= (a+2b+4c)(a2+(2b)2 + (4c)2−a×2b−2b×4c−4c×a)
= (a+2b+4c)(a2 +4b2 +16c2 −2ab−8bc−4ac)
Therefore, a3 + 8b3 + 64c3 − 24abc = (a+2b+4c)(a2 +4b2 +16c2 −2ab−8bc−4ac)
Question 2: x 3 − 8y 3+ 27z3 + 18xyz
Solution:
= x3 − (2y) 3 + (3z) 3 − 3×x×(−2y)(3z)
= (x + (−2y) + 3z) (x2 + (−2y)2 + (3z) 2 −x(−2y)−(−2y)(3z)−3z(x))
[using a3+b3+c3−3abc = (a+b+c)(a2+b2+c2−ab−bc−ca)]
=(x −2y + 3z)(x2 + 4y2 + 9 z2 + 2xy + 6yz − 3zx)
Question 3: 27x 3 − y 3– z3 – 9xyz
Solution:
27x 3 − y 3– z3 – 9xyz
= (3x) 3 − y 3– z3 – 3(3xyz)
[Using a3 + b3 + c3 −3abc = (a + b + c)(a2+b2+c2−ab−bc−ca)]
Here a = 3x, b = -y and c = -z
= (3x – y – z){ (3x)2 + (- y)2 + (– z)2 + 3xy – yz + 3xz)}
= (3x – y – z){ 9x2 + y2 + z2 + 3xy – yz + 3xz)}
Question 4: 1/27 x3 − y3 + 125z3 + 5xyz
Solution:
1/27 x3 − y3 + 125z3 + 5xyz
= (x/3)3+(−y)3 +(5z)3 – 3 x/3 (−y)(5z)
[Using a3 + b3 + c3 −3abc = (a + b + c)(a2+b2+c2−ab−bc−ca)]
= (x/3 + (−y) + 5z)((x/3)2 + (−y)2 + (5z) 2 –x/3(−y) − (−y)5z−5z(x/3))
= (x/3 −y + 5z) (x^2/9 + y2 + 25z2 + xy/3 + 5yz – 5zx/3)
Question 5: 8x3 + 27y3 − 216z3 + 108xyz
Solution:
8x3 + 27y3 − 216z3 + 108xyz
= (2x) 3 + (3y) 3 +(−6y) 3 −3(2x)(3y)(−6z)
= (2x+3y+(−6z)){ (2x)2+(3y) 2+(−6z) 2 −2x×3y−3y(−6z)−(−6z)2x}
= (2x+3y−6z) {4x2 +9y2 +36z2 −6xy + 18yz + 12zx}
Question 6: 125 + 8x3 − 27y3 + 90xy
Solution:
125 + 8x3 − 27y3 + 90xy
= (5)3 + (2x) 3 +(−3y) 3 −3×5×2x×(−3y)
= (5+2x+(−3y)) (52 +(2x) 2 +(−3y) 2 −5(2x)−2x(−3y)−(−3y)5)
= (5+2x−3y)(25+4x2 +9y2 −10x+6xy+15y)
Question 7: (3x−2y)3 + (2y−4z) 3 + (4z−3x) 3
Solution:
(3x−2y)3 + (2y−4z) 3 + (4z−3x) 3
Let (3x−2y) = a, (2y−4z) = b , (4z−3x) = c
a + b + c= 3x−2y+2y−4z+4z−3x = 0
We know, a3 + b3 + c3 −3abc = (a + b + c)(a2+b2+c2−ab−bc−ca)
⇒ a3 + b3 + c3 −3abc = 0
or a3 + b3 + c3 =3abc
⇒ (3x−2y)3 + (2y−4z) 3 + (4z−3x) 3 = 3(3x−2y)(2y−4z)(4z−3x)
Question 8: (2x−3y)3 + (4z−2x) 3 + (3y−4z) 3
Solution:
(2x−3y)3 + (4z−2x) 3 + (3y−4z) 3
Let 2x – 3y = a , 4z – 2x = b , 3y – 4z = c
a + b + c= 2x – 3y + 4z – 2x + 3y – 4z = 0
We know, a3 + b3 + c3 −3abc = (a + b + c)(a2+b2+c2−ab−bc−ca)
⇒ a3 + b3 + c3 −3abc = 0
(2x−3y)3 + (4z−2x) 3 + (3y−4z) 3 = 3(2x−3y)(4z−2x)(3y−4z)
Exercise VSAQs Page No: 5.24
Question 1: Factorize x4 + x2 + 25
Solution:
x4 + x2 + 25
= (x2) 2 + 52 + x2
[using a2 + b2 = (a + b) 2 – 2ab ]
= (x2 +5) 2 −2(x2 ) (5) + x2
=(x2 +5) 2 −10x2 + x2
=(x2 + 5) 2 − 9x2
=(x2 + 5) 2 − (3x) 2
[using a2 – b2 = (a + b)(a – b ]
= (x 2 + 3x + 5)(x2 − 3x + 5)
Question 2: Factorize x2 – 1 – 2a – a2
Solution:
x2 – 1 – 2a – a2
x2 – (1 + 2a + a2 )
x2 – (a + 1)2
(x – (a + 1)(x + (a + 1)
(x – a – 1)(x + a + 1)
[using a2 – b2 = (a + b)(a – b) and (a + b)^2 = a^2 + b^2 + 2ab ]
Question 3: If a + b + c =0, then write the value of a3 + b3 + c3.
Solution:
We know, a3 + b3 + c3 – 3abc = (a + b +c ) (a2 + b2 + c2 – ab – bc − ca)
Put a + b + c =0
This implies
a3 + b3 + c3 = 3abc
Question 4: If a2 + b2 + c2 = 20 and a + b + c =0, find ab + bc + ca.
Solution:
We know, (a+b+c)² = a² + b² + c² + 2(ab + bc + ca)
0 = 20 + 2(ab + bc + ca)
-10 = ab + bc + ca
Or ab + bc + ca = -10
Question 5: If a + b + c = 9 and ab + bc + ca = 40, find a2 + b2 + c2 .
Solution:
We know, (a+b+c)² = a² + b² + c² + 2(ab + bc + ca)
92 = a² + b² + c² + 2(40)
81 = a² + b² + c² + 80
⇒ a² + b² + c² = 1